If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3.5x^2+16x-50=0
a = 3.5; b = 16; c = -50;
Δ = b2-4ac
Δ = 162-4·3.5·(-50)
Δ = 956
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{956}=\sqrt{4*239}=\sqrt{4}*\sqrt{239}=2\sqrt{239}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-2\sqrt{239}}{2*3.5}=\frac{-16-2\sqrt{239}}{7} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+2\sqrt{239}}{2*3.5}=\frac{-16+2\sqrt{239}}{7} $
| -2a+7=a+8 | | X^2-4x-2116=0 | | 3(6+2y/3)-2y=18 | | (x-5)+(3x-7)=x-(2-3x) | | 5y-7/3y=2 | | -15x10-(x-3)=16x+20+12 | | x+(2x+1)=2 | | (4x-5)+x=50 | | 0=12(14x-9) | | 13=(2x-14)13 | | 13x+4=8+25-4 | | 75c=10 | | 5(8x+20)=45 | | (8+w)(4w+3)=w | | 5x(8x+20)=40 | | (15+x)/(33+x)=64/10000 | | 2x+5-45=30 | | x²+|x+1|=1-2x | | 15+x/(10+18+15+x)=64 | | 5(x-1)+3x=7 | | -(x-9)-4x=x+51 | | (x-9)-4x=x+51 | | X²-6x-1=0 | | 7e+2=65 | | x^2-1.2x=12.8 | | 3/4=x/288 | | 25r-10= | | (X+1)(X+2)=(x-5)(x-6) | | 3x+23=11x-44 | | x(x+3)=19.84 | | x(x+3=19.84 | | x/2+x/3=15/2 |